99 research outputs found

    Lateral hypothalamic circuits for feeding and reward

    Get PDF
    In experiments conducted over 60 years ago, the lateral hypothalamic area (LHA) was identified as a critical neuroanatomical substrate for motivated behavior. Electrical stimulation of the LHA induces voracious feeding even in non-restricted animals. In the absence of food, animals will work tirelessly, often lever-pressing 1000’s of times per hour, for electrical stimulation at the same site that provokes feeding, drinking, and other species-typical motivated behaviors. Here we review the classic findings from electrical stimulation studies and integrate them with more recent work that has utilized contemporary circuit-based approaches to study the LHA. We identify specific anatomically and molecularly defined LHA elements that integrate diverse information arising from cortical, extended amygdala, and basal forebrain networks to ultimately generate a highly specified and invigorated behavioral state conveyed via LHA projections to downstream reward and feeding specific circuits

    Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance

    Get PDF
    Lateral habenula (LHb) projections to the ventral midbrain, including the rostromedial tegmental nucleus (RMTg) conveys negative reward-related information, but the behavioral ramifications of selective activation of this pathway remain unexplored. We found that exposure to aversive stimuli in mice increased LHb excitatory drive onto RMTg neurons. Further, optogenetic activation of this pathway promoted active, passive, and conditioned behavioral avoidance. These data demonstrate that activity of LHb efferents to the midbrain is aversive, but can also serve to negatively reinforce behavioral responding

    Tools for Resolving Functional Activity and Connectivity within Intact Neural Circuits

    Get PDF
    Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements

    Optogenetic Modulation of Neural Circuits that Underlie Reward Seeking

    Get PDF
    The manifestation of complex neuropsychiatric disorders such as drug and alcohol addiction is thought to result from progressive maladaptive alterations in neural circuit function. Clearly, repeated drug exposure alters a distributed network of neural circuit elements. However, a more precise understanding of addiction has been hampered by an inability to control and, consequently, identify specific circuit components that underlie addictive behaviors. The development of optogenetic strategies for selectively modulating the activity of genetically defined neuronal populations has provided a means for determining the relationship between circuit function and behavior with a level of precision that has been previously unobtainable. Here, we briefly review the main optogenetic studies that have contributed to elucidate neural circuit connectivity within the ventral tegmental area and the nucleus accumbens, two brain nuclei that are essential for the manifestation of addiction-related behaviors. Additional targeted manipulation of genetically defined neural populations in these brain regions as well as afferent and efferent structures promises to delineate the cellular mechanisms and circuit components required for the transition from natural goal-directed behavior to compulsive reward-seeking despite negative consequences

    Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

    Get PDF
    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms

    Considerations When Using Cre-Driver Rodent Lines for Studying Ventral Tegmental Area Circuitry

    Get PDF
    The use of Cre-driver rodent lines for targeting ventral tegmental area (VTA) cell types has generated important and novel insights into how precise neurocircuits regulate physiology and behavior. While this approach generally results in enhanced cellular specificity, an important issue has recently emerged related to the selectivity and penetrance of viral targeting of VTA neurons using several Cre-driver transgenic mouse lines. Here, we highlight several considerations when utilizing these tools to study the function of genetically defined neurocircuits. While VTA dopaminergic neurons have previously been targeted and defined by the expression of single genes important for aspects of dopamine neurotransmission, many VTA and neighboring cells display dynamic gene expression phenotypes that are partially consistent with both classically described dopaminergic and non-dopaminergic neurons. Thus, in addition to varying degrees of selectivity and penetrance, distinct Cre lines likely permit targeting of partially overlapping, but not identical VTA cell populations

    Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward

    Get PDF
    Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect

    Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens

    Get PDF
    SummaryWhile Pavlovian and operant conditioning influence drug-seeking behavior, the role of rapid dopamine signaling in modulating these processes is unknown. During self-administration of cocaine, two dopaminergic signals, measured with 100 ms resolution, occurred immediately before and after the lever press (termed pre- and postresponse dopamine transients). Extinction of self-administration revealed that these two signals were functionally distinct. Preresponse transients, which could reflect the motivation to obtain the drug, did not decline during extinction. Remarkably, postresponse dopamine transients attenuated as extinction progressed, suggesting that they encode the learned association between environmental cues and cocaine. A third type of dopamine transient, not time locked to overt stimuli, decreased in frequency during extinction and correlated with calculated cocaine concentrations. These results show that dopamine release transients involved in different aspects of cocaine self-administration are highly plastic—differentially governed by motivation, learned associations linked with environmental stimuli, and the pharmacological actions of cocaine

    ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions

    Get PDF
    The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs

    Lateral Hypothalamic Area Glutamatergic Neurons and Their Projections to the Lateral Habenula Regulate Feeding and Reward

    Get PDF
    The overconsumption of calorically dense, highly palatable foods is thought to be a major contributor to the worldwide obesity epidemic; however, the precise neural circuits that directly regulate hedonic feeding remain elusive. Here, we show that lateral hypothalamic area (LHA) glutamatergic neurons, and their projections to the lateral habenula (LHb), negatively regulate the consumption of palatable food. Genetic ablation of LHA glutamatergic neurons increased daily caloric intake and produced weight gain in mice that had access to a high-fat diet, while not altering general locomotor activity. Anterior LHA glutamatergic neurons send a functional glutamatergic projection to the LHb, a brain region involved in processing aversive stimuli and negative reward prediction outcomes. Pathway-specific, optogenetic stimulation of glutamatergic LHA-LHb circuit resulted in detectable glutamate-mediated EPSCs as well as GABA-mediated IPSCs, although the net effect of neurotransmitter release was to increase the firing of most LHb neurons. In vivo optogenetic inhibition of LHA-LHb glutamatergic fibers produced a real-time place preference, whereas optogenetic stimulation of LHA-LHb glutamatergic fibers had the opposite effect. Furthermore, optogenetic inhibition of LHA-LHb glutamatergic fibers acutely increased the consumption of a palatable liquid caloric reward. Collectively, these results demonstrate that LHA glutamatergic neurons are well situated to bidirectionally regulate feeding and potentially other behavioral states via their functional circuit connectivity with the LHb and potentially other brain regions
    • …
    corecore